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Using the Ginzburg-Landau theory for two-band superconductors, we determine the surface energy �s

between coexisting normal and superconducting states at the thermodynamic critical magnetic field. Close to
the transition temperature, where the Ginzburg-Landau theory is applicable, we demonstrate that the two-band
problem maps onto an effective single band problem. While the order parameters of the two bands may have
different amplitudes in the homogeneous bulk, near Tc the Josephson-type coupling between the bands leads to
the same spatial dependence of both order parameters near the interface. This finding puts into question the
possibility of intermediate, so-called type-1.5 superconductivity, in the regime where the Ginzburg-Landau
theory applies.
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I. INTRODUCTION

Depending on the behavior in external magnetic fields,
superconductors are classified as type-I or type-II. In type-I
superconductors, the surface energy density �s between re-
gions of finite and vanishing order parameters, coexisting at
the thermodynamic critical field Hc, is positive.1 In type-II
superconductors this energy is negative and a homogeneous
superconducting state is no longer stable, leading to the for-
mation of a vortex lattice.2 Within the Ginzburg-Landau
�GL� theory1 for one-band superconductors the interface en-
ergy per unit area,

�s = �
Hc

2

4�
���� , �1�

is determined by the value of the thermodynamic critical
field, Hc, the magnetic penetration depth, �, and the dimen-
sionless function, ����, that depends on the GL parameter
�=� /�, the ratio of the penetration depth and the supercon-
ducting coherence length. Properties of ���� are discussed,
e.g., in Ref. 3. In the regimes of extreme type-I and type-II
superconductivity

���� = �
23/2

3
�−1 if � � 1

−
4

3
��2 − 1� if � � 1.� �2�

We have evaluated this function numerically and the re-
sult is shown in Fig. 1. The transition between type-I and
type-II behaviors occurs for �=2−1/2, where ���� changes
sign.

Fermi surfaces in many superconductors may consist of
two or more well separated sheets with different energy
gaps.4,5 Evidence for two energy gaps was obtained in high-
purity superconducting Nb, Ta, and V,6 and Nb-doped
SrTiO3.7 Recently, tunneling8–10 and point contact11,12 spec-
troscopies, as well as heat-capacity measurements13–15 for
MgB2 �Refs. 16–20� give clear evidence for two-band super-
conductivity with gaps 	1�0.7 meV and 	2�2.5 meV

�for recent reviews, see Refs. 21 and 22�. Other systems that
have been discussed as two-band superconductors are
RNi2B2C with R=Lu,Y,23,24 2H-NbSe2,25 and the recently
discovered FeAs superconductors.26 In all cases the ampli-
tude of the superconducting gap is different for different
sheets of the Fermi surface.

Motivated by the study of these multiband superconduct-
ors, the term type-1.5 superconductivity has been coined27 to
emphasize the possibility of a state that is intermediate be-
tween the two regimes. Specifically, one considers two-
component or two-band systems with order parameters

1�r� and 
2�r� that have qualitatively different spatial de-
pendence, with different respective coherence lengths �1 and
�2. The existence of these two length scales emerges from the
assumption that one can neglect the Josephson-type coupling
between two order parameters. The regime where one ex-
pects novel behavior is obviously the limit �1����2. Then
one order-parameter component might behave as a type-I
superconductor while the other follows the type-II behavior.
Consequences of such behavior were discussed in Ref. 28
where it was concluded that properties emerge that fall out-
side the usual type-I/type-II dichotomy. For example, the
emergence of “vortex molecules” and of an inhomogeneous
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FIG. 1. �Color online� The function, ����, of the one-band prob-
lem calculated numerically �full points� compared to theoretical
limit of Eq. �2� �dashed lines�. The inset shows an enlargement of
the large � domain.
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state comprising a mixture of domains of a two-component
Meissner state and vortex clusters were proposed. In Ref. 29
the surface energy for such a system was analyzed with the
conclusion that ���� must be replaced by a function that
depends on several dimensionless quantities, in particular, on
the ratio �1 /�2. Changing �1 /�2 at fixed penetration depth
was shown to yield a sign change in �s.

Obviously, even in multiband superconductors, the sign of
the surface energy is either positive or negative. Thus, it
seems more appropriate to discuss the physics that was in-
vestigated in Ref. 27 within the GL approach,30 as interesting
modifications of type-II superconductivity. More impor-
tantly, it is crucial to analyze what exactly happens in a
multiband superconductor in the vicinity of the transition
temperature, with

� = �Tc − T�/Tc � 1, �3�

in the regime where the GL approach is valid �ignoring, as
usual, critical fluctuations�.

One of the key features of the two-band GL model is the
Josephson-type coupling between the two bands,

fc�r� = − ��
1
��r�
2�r� + 
2

��r�
1�r�� , �4�

in the expansion of the GL free-energy density. References
28 and 29 analyze the limit �=0, but assume that both order
parameters, while uncoupled, order at the same temperature.
The more realistic regime is clearly the one where the com-
mon transition temperature is the consequence of a finite
order-parameter coupling �.

In this paper we determine the surface energy �s of a
two-band GL model including the coupling, Eq. �4�, between
the bands, i.e., we consider ��0. We find that in the regime
��1, where the GL theory provides the correct mean-field
description, Eq. �1� continues to be the correct expression for
the interface energy with same function ����, which implies
that the surface energy still changes sign at �=2−1/2. The
multicomponent nature of the order parameter enters the GL
� through the values of � and

� = ��1
−2 + �2

−2�−1/2. �5�

A detailed definition of � and �i in the two-band problem is
presented below. We also find that, while the order param-
eters may have different amplitudes in the homogeneous
bulk, 
1,0 and 
2,0, close to the transition temperature, i.e.,
for small �, they have the same spatial dependence near the
interface. In particular,


1�z�

2�z�

=

1,0


2,0
+ O��� , �6�

i.e., the coupling enforces the same spatial dependence for
both components. 
1�r� and 
2�r� vary in space on the
single length scale � of Eq. �5�. Close to a superconducting
transition it is then sufficient to introduce only one order
parameter to characterize the symmetry broken state. An ex-
ception is the case where two completely uncoupled order
parameters are accidentally degenerate, i.e., both compo-
nents accidentally have the exact same transition tempera-
tures Tc while they have, at the same time, different coher-

ence lengths. This is the scenario considered in Refs. 28 and
29. We stress that our results do not preclude unconventional
type-II behavior that may occur deeper in the ordered state
away of the GL domain. This is however beyond the limit of
applicability of the GL theory. In the next section we present
our analysis. We summarize our findings in Sec. III.

II. TWO-BAND GINZBURG-LANDAU THEORY

We start with the free energy,

F =	 f�r�d3r , �7�

of a two-band superconductor. F is a functional of the pairing
wave functions 
1 and 
2 of the two components or bands
and of the vector potential A associated with the magnetic
field B=�
A. The free-energy density, f�r�, relative to the
zero-field normal-state value, is

f�r� = f1�r� + f2�r� + fc�r� +
B2�r�
8�

. �8�

Here the f j�r�, with j=1,2, are the GL expansions of the two
bands,

f j = aj

 j
2 +
1

2
bj

 j
4 +

1

2mj
����

i
� −

e�

c
A

 j�2

�9�

and fc�r� is the coupling term given in Eq. �4�. Here bj �0
and the bands’ effective masses are mj. The physical values
of the order parameter and vector potential are determined
via �F /�
i=�F /�A�=0. In principle additional coupling
terms such as �
1

�
2�2, etc., are allowed. For clean multi-
band systems, a weak-coupling expansion yields that the co-
efficients of such terms vanish due to momentum
conservation.33 In addition, even if present, such terms are
subleading close to the transition temperature point when
compared to fc�r� of Eq. �4�.

We first discuss the homogeneous, zero-field solution. Ig-
noring the interband coupling, fc, one finds, as usual,

i,0��=0�=�−ai /bi for ai�0 and 
i,0��=0�=0 for ai�0.
In the general case of fc�0, however, the common critical
temperature Tc is not equal to either of Tc,j and there is no
reason that both coefficients ai�T� change sign at the same
temperature. At Tc the smallest eigenvalue of the matrix of
the homogeneous quadratic terms in f�r� vanishes. In our
problem, this eigenvalue is

r− =
1

2
�a1 + a2 − ��a1 − a2�2 + 4�2� , �10�

it vanishes for �2=a1�Tc�a2�Tc�. Thus, it must hold that
a1,2�Tc��0, as r− would be negative if one of the two ai is
smaller or equal to zero. Thus, close to Tc, ai�0 and the
interband coupling enhances the transition temperature com-
pared to the largest of the Tc,j for the �=0 limit.

To proceed, we introduce the dimensionless ratio
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t �
�2 − a1a2

a1a2
�

Tc − T

Tc
�11�

that vanishes at Tc �see also the Appendix�. It is convenient
to eliminate �2= �1+ t�a1a2 in favor of t. Thus, small t natu-
rally corresponds to finite interband coupling �. For small t
we have r−�−ta1a2 / �a1+a2� and the smallest eigenvalue
changes sign at t=0.

The free-energy minimization of the homogeneous prob-
lem for ��0 leads to the system

a1
1 + b1
1
3 − �
2 = 0,

a2
2 + b2
2
3 − �
1 = 0, �12�

which is readily reduced to a fourth-order equation for 
1
2

that can be solved using known formulas for the roots of a
quartic equation. One can simplify the problem by recogniz-
ing that the GL theory is only valid in the vicinity of the
transition temperature, t�1. The homogeneous order param-
eters can easily be determined to leading order in t,


1,0
2 = u1t with u1 =

a2
2a1

a2
2b1 + a1

2b2
, �13�


2,0
2 = u2t with u2 =

a1
2a2

a2
2b1 + a1

2b2
, �14�

where the subscript 0 is to denote the zero-field solution.
Hence, the temperature dependence of the order parameters
is as expected,


 j,0
2 � t �

Tc − T

Tc
. �15�

We stress that within GL theory there is no reason to go to
terms of higher orders in t. Of course, away from Tc correc-
tions can be significant, in particular, for small � but those
effects require a microscopic approach based on
Bogoliubov-de Gennes equations.31

Close to Tc, we can also determine the thermodynamic
critical field by imposing f�Hc�=0,

Hc
2

4�
= �

j=1

2

bj
� j
4 =
a1

2a2
2t2

a2
2b1 + a1

2b2
. �16�

One can formally define the one-band penetration depth as
�i

−2=4�e�2
i,0
2 / �mi

�c2�. Since the additive superfluid density
is proportional to �−2, the actual London penetration depth is

�−2 = �1
−2 + �2

−2. �17�

Using Eq. �14�, we obtain

�−2 =
4�e�2a1a2

c2

a2/m1
� + a1/m2

�

a2
2b1 + a1

2b2
t . �18�

It is now straightforward to set up the formalism to deter-
mine the interface energy.

III. INTERFACE ENERGY

In evaluating the surface energy we follow closely the
classical approach that was used for the single band
problem.1 Consider the interface between superconducting
and normal half spaces at the plane z=0. The field H is
applied along the x axis parallel to the interface and equal to
Hc to ensure coexistence of two phases. Then the magnetic
induction has only one component Bx=B�z� and the vector
potential can be chosen as Ay =−A�z�, as shown in Fig. 2,
yielding

B�z� = A��z� . �19�

We can choose real order parameters that vary along the z
direction. The Gibbs free energy per unit area that is mini-
mum in a given applied field reads

G = F −
Hc

4�
	

−�

�

dzB�z� . �20�

Far away from the interface we have on one side the normal
state with 
i�z→−��→0 and B�z→−��→Hc while on the
other side for z→� we have the homogeneous supercon-
ducting state with B→0 and 
i→
i,0.

It is convenient to introduce dimensionless quantities,

� j
2 =


 j
2

ujt
, b =

B
�2Hc

, and s =
z

�
, �21�

which imply that the dimensionless vector potential a
=A / ��2Hc��. The surface energy is then given by

�s = �
Hc

2

4�
���1,�2,a� , �22�

where � is a functional that must be minimized with respect
to the �1, �2, and a to yield �s. After simple algebra we
obtain

� =	 �V��1,�2,a� + �
i

�i
−2�i�

2 + �a� − 2−1/2�2�ds ,

�23�

where

SC
state

ẑ

B

A

normal
state

FIG. 2. �Color online� Schematic representation of the interface
between the normal and the superconducting states.
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V��1,�2,a� =
�1

2 + �2
2 − 2�1 + t�1�2

t
+

u

2
�1

4 +
1 − u

2
�2

4

+
�2

2�1
2 + �1

2�2
2

�1
2 + �2

2 a2. �24�

We use here the following notations: �i�=d�i /ds, b=a�
=da /ds, and u=u1, as given in Eq. �13�, and

�i =
�

�i
, with �i

2 =
�2

2aimi
�t

. �25�

Minimization of � gives a system of coupled differential
equations for �i, a,

1

�i
2�i� =

1

2

�V

��i
, �26�

a� =
1

2

�V

�a
. �27�

Multiplying Eq. �26� by �i�, Eq. �27� by a� and summing, the
first integral of this system is obtained,

�
i

�i
−2�i�

2 + a�2 − V��1,�2,a� = const. �28�

The peculiar term in our analysis is the first one in
V��1 ,�2 ,a� of Eq. �24� that seems to be singular as t→0.
Expanding for small t, we have

�1
2 + �2

2 − 2�1 + t�1�2

t
�

��1 − �2�2

t
− �1�2. �29�

Thus, close to the transition temperature we must have �1
=�2.

The origin of this behavior is that the coefficients of the
quadratic terms in the GL expansion that do not change sign
at the transition temperature. This is caused by the Josephson
coupling between the two bands that raises the transition
temperature of the coupled system above the transition tem-
peratures of the uncoupled systems. This conclusion is con-
firmed below by a direct numerical minimization of the full
functional � of Eq. �23�.

Introducing ��s�=�1�s�=�2�s�, which is equivalent to Eq.
�6�, one obtains the surface energy functional in the form

� =	 ds�V0��,a� + �−2��2 + �a� − 2−1/2�2� �30�

with

V0��,a� = − �2 +
1

2
�4 + �2a2 �31�

and effective parameter � given by

�−2 = �1
−2 + �2

−2. �32�

This is the same form of the functional as for the standard
one-band surface energy problem.1,3

It is worth noting that �i enter the surface energy only
through the combination � of Eq. �32�. In particular, this

leads to Eq. �5� for the correlation length of the two band
problem with �=� /�. Thus, the interface problem is identi-
cal to the one of a single band system, leading to Eq. �1� with
the same function ����.

These conclusions are supported by numerical minimiza-
tion of ���1 ,�2 ,a�. We discretized the interval s= �0,2L� to
N equidistant steps �sj =2jL /N� and minimized � with re-
spect to �1�sj�, �2�sj�, and a�sj� subject to boundary condi-
tions a��0�=2−1/2, a�2L�=0, and �i�0�=0 and �i�2L�=�i,0.
The homogeneous bulk solutions �i,0 approach the value
�i,0=1 for t→0. Finally, since in the limit 2L→� the inter-
face position is arbitrary, at z=L we assumed �1�L�= 1

2 ,
which centers the interface position in the large � limit.

Our results for N=400 are shown in Figs. 3–6. In com-
paring Figs. 3 and 4, as well as Figs. 5 and 6, we show that
the order parameters do indeed approach the behavior with
identical spatial variation, as given by Eq. �6�, as the critical
temperature is approached.

In Figs. 3 and 4 we focus on the most nontrivial limit with
�1=0.45�2−1/2��2=5. Naively, one could expect �1 to
change on distances of the order �1��2� �type-I behavior�
while �2��2� suggests type-II behavior of �2. Contrary to
this expectation we find that both order parameters are
strongly coupled by the Josephson energy and have increas-
ingly similar spatial variation as t→0. As we will see below,
the interface energy for this set of parameters is positive and
the system behaves as a type-I superconductor as � in Eq.
�32� is dominated by the smallest of the two �i.

In Figs. 5 and 6 we show the behavior for �1=3 and �2
=4, corresponding indeed to a type-II superconductor with
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(b)
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FIG. 3. �Color online� �a� The reduced field and order param-
eters obtained numerically by minimizing the interface energy func-
tional, �, for �1=0.45, �2=5, u=0.6, and t=0.07. The reduced or-
der parameter �1 is shown by a solid line and the dashed line is �2.
�b� The closeup of the order parameters for 6.5�z /��7.5.
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negative interface energy �see below for explicit values�.
Again, both order parameters follow the same spatial depen-
dence and behave according to Eq. �6� as t decreases.

In addition, as t decreases, the value of the minimized
functional of Eq. �23� approaches the value of the function
���� of the single band problem with � determined by Eq.
�32�. This can explicitly be seen in the numerical results of
�min and ���� corresponding to Figs. 3–6. The effective one-
band solution with �=0.448, thus corresponding to Figs. 3
and 4, gives ����=0.479, which differs from the numerical
result of Fig. 3, �min=0.530, by �11%. This difference de-
creases to �2% for a smaller value of t as shown in Fig. 4,
for which �min=0.488. The numerical solutions shown in
Fig. 5 obtained for t=0.2 correspond to �min=−0.275
whereas the effective one band �=2.4 yields ����=−0.47;
hence �min and � differ by �42%. Again, by decreasing the
value of t to 0.01, we find results shown in Fig. 6 corre-
sponding to �min=−0.459, now only by �2% different from
�.

IV. SUMMARY

In summary, for a two-band superconductor we analyzed
the energy of the interface between regions of a finite order
parameter and zero-order parameter, coexisting at the ther-
modynamic critical field Hc. If one includes the interband
Josephson coupling between the bands, i.e., the leading al-
lowed interaction between the Cooper-pair wave function 
1
and 
2, both order parameters vary close to the transition

temperature on identical length scales. Thus, despite the fact
that both order parameters may have very different ampli-
tudes, they vary on the same characteristic length scale
��1

−2+�2
−2�−1/2, where the �i are the typical length scales

where the gradient �or kinetic� energies in the GL functional
become comparable to the bulk condensation energy. We
stress that �1,2 are just auxiliary quantities and only � is a
measurable physical length. An important implication of this
result is that the surface energy is determined by a single GL
parameter �=� /� in a way identical to the single band case.

Thus, there is no room left for so-called type-1.5 super-
conductivity in the GL regime close to Tc. Of course, our
analysis cannot rule out the possibility of interesting uncon-
ventional physics due to distinct characteristic length scales
�i deep in the superconducting state. Such possibility then
requires an approach within the microscopic framework of
the Bogoliubov-de Gennes or Gor’kov formalisms. In the
recent review by Brandt and Das,32 situations are described
which do not fit to a rigid type-I-type-II dichotomy. Close to
Tc, however, only one relevant superconducting order param-
eter exists and the phenomenology of the transition between
type-I and type-II superconductivities is unchanged by the
multiband character of the system.
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APPENDIX: MICROSCOPIC EXPRESSION OF THE
GL COEFFICIENTS

Within a weak-coupling BCS theory it is possible to de-
rive the parameters of the GL expansion, Eqs. �7�–�9�, in

terms of the microscopic densities of states and pairing
interactions,33

ai = NF���−1�ii − ni�ln
2e��D

�Tc
+ �
� ,

bi =
7��3�NF

8�2Tc
2 ni,

� =
NF

det �̂
�12. �A1�

Here NF is the densities of states at the Fermi level per one
spin, ni=NF,i /NF are relative densities of states on two
bands, �ij =NFVij are interaction constants proportional to the
symmetric matrix Vij responsible for the Cooper pairing,34

�= �Tc−T� /Tc, and ��−1�11=�22 /det �̂, etc., are elements of
the matrix inverse to �ij.

The transition temperature follows from the condition
�a1a2��=0=�2 that leads to

Tc =
2e�

�
�D exp�− 1/�̃� �A2�

with effective coupling constant

�̃ = 2n1n2 det �̂�n1�11 + n2�22

− ��n1�11 − n2�22�2 + 4n1n2�12
2 �−1. �A3�

It is now straightforward to express the variable t in Eq. �11�
in terms of � close to the transition temperature, which shows

t =
det �̂��n1�11 − n2�22�2 + 4n1n2�12

2

�12
2 � . �A4�
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